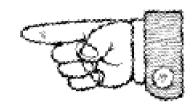


Antennas & Wave Propagation

Electronic Dep.

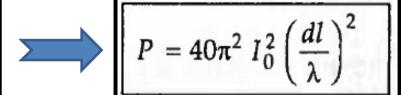
3rd Stage

Lecture Four


Power radiated by a current element and Radiation Resistance

Prepared By

Asst. Lect. Ayad Q. Abdulkareem


Power radiated by a current element

$$P = \int_{\text{surface}} (\theta_{av} \, dA)$$

$$P = \int_{0}^{\pi} \left[\frac{(\omega^{2} \, I_{0}^{2} \, dl^{2} \sin^{2} \theta)}{32\pi^{2} \, \epsilon r^{2} c^{3}} \right] 2\pi r^{2} \sin \theta \, d\theta$$

$$P = \int_{0}^{\pi} \left[\frac{(\omega^{2} \, I_{0}^{2} \, dl^{2} \sin^{2} \theta)}{32\pi^{2} \, \epsilon r^{2} c^{3}} \right] 2\pi r^{2} \sin \theta \, d\theta$$

The current I_0 is the maximum current and is equal to $I_{\rm rms}$ $\sqrt{2}$.

$$P = 80\pi^2 I_{\rm rms}^2 \left(\frac{dl}{\lambda}\right)^2$$

Radiation Resistance

is that fictitious resistance which when connected in series with the antenna will consume the same amount of power as when actually radiating

$$\mathcal{P}_{av} = \left[\frac{\omega^2 I_0^2 dl^2 \sin^2 \theta}{32\pi^2 \epsilon r^2 c^3} \right] W/m^2$$

$$R_r = \frac{I_{\text{rms}}^2}{I_{\text{rms}}^2}$$

$$R_r = 80\pi^2 \left(\frac{dl}{\lambda}\right)^2$$

$$R_r = 789.5 \left(\frac{dl}{\lambda}\right)^2$$

Antenna Effective length

In practice current will be either linear or sinusoidal. This effect reduces the amount of power radiated from the antenna and effectively makes aerial shorter than the one with same current throughout.

$$\theta_{av} = \left[\frac{\omega^2 I_0^2 dl^2 \sin^2 \theta}{32\pi^2 \epsilon r^2 c^3} \right] W/m^2$$

$$R_r = \frac{1}{I_{\text{rms}}^2}$$

$$R_r = 80\pi^2 \left(\frac{dl}{\lambda}\right)^2$$

$$R_r = 789.5 \left(\frac{dl}{\lambda}\right)^2$$

Thanks for Listening

Any Question Please...